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ABSTRACT 1 
Shared mobility-on-demand services are evolving rapidly in cities around the world. As a 2 
prominent example, ridesourcing is becoming an integral part of many urban transportation 3 
ecosystems. Despite the centrality, limited public availability of detailed temporal and spatial data 4 
on ridesourcing trips has stifled research in how new services interact with traditional mobility 5 
options and how they impact travel in cities. Improving data-sharing agreements is opening 6 
unprecedented opportunities for research in this area. This study’s goal is to study emerging 7 
patterns of mobility using the recently released City of Chicago public ridesourcing data. The data 8 
are supplemented with weather, transit, and taxi data to gain a broader understanding of 9 
ridesourcing’s role in the mobility ecosystem. Considering the analysis data is large and contains 10 
numerical and categorical variables, K-prototypes is utilized for its ability to accept mixed variable 11 
type data. An extension of the K-means algorithm, its output is a classification of the data into 12 
several clusters called prototypes. Six ridesourcing prototypes were identified, described, and 13 
discussed in this study. Identified user segments are defined by adverse weather conditions, 14 
competition with alternative modes, spatial patterns, and tendency for ridesplitting.   15 
 16 
Keywords: Transportation network company, Ridesourcing, Ridesplitting, K-prototype, 17 
Clustering analysis  18 
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INTRODUCTION 1 
Transportation Network Companies (TNCs) are prominent in many urban transportation 2 
ecosystems. The growth of ridesourcing services is attributed to improvements in Information and 3 
Communication Technologies that made these services more convenient to use compared to 4 
traditional modes of transport. However, the proliferation of ridesourcing services has been a 5 
disruptive force as it transforms the mobility landscape. This transformation has not been widely 6 
studied as many TNCs are reluctant to make their data publicly available. Recent data-sharing 7 
agreements with the City of Chicago, IL enables researchers to examine the role of ridesourcing 8 
in the transportation ecosystem using an abundance of temporal and spatial data on ridesourcing 9 
trips.  10 
 Several studies have characterized the adoption, frequency, and attitudes towards 11 
ridesourcing (Circella et al., 2016, Dias et al., 2017, Alemi et al., 2018a, Alemi et al., 2018b), but 12 
none have used publicly available trip data at the scale and scope provided by the City of Chicago. 13 
This study uses this newly released trip data, to develop insights about the role ridesourcing plays 14 
in the transportation ecosystem. The detailed data from operators Uber, Lyft and Via is fused with 15 
local transit, and taxi data, as well as weather observations. The purpose of this research is to study 16 
the mobility patterns present in the data by grouping similar trips together.  17 

This paper utilizes an unsupervised learning algorithm to examine the underlying 18 
relationships in the data. Due to the mixed data types (i.e. data containing both numeric and 19 
qualitative/categorical variables), a clustering algorithm must be chosen carefully. The 20 
unsupervised learning technique proposed in this paper is the K-Prototypes algorithm developed 21 
by Huang (1998). It is an extension of the K-Means algorithm that accepts categorical data. The 22 
results of this model are similar to K-Means algorithm as the output is a classification of the data 23 
into K number of prototypes, the equivalent of clusters. A more complete explanation of model 24 
development and attribute selection is given in the methodology section. 25 
 This study contributes to the literature by providing a closer look at large, relatively 26 
disaggregate TNC data in a major metropolitan area. After tuning parameters for the best fit, the 27 
optimal number of prototypes to describe the data is 6. The first group of users (i.e. prototype) 28 
contains trips that occur in adverse weather conditions such as rainy weather. The second prototype 29 
involves trips that occur in the evening. The third prototype represents trips that are typically longer 30 
in distance but are not shared. The fourth prototype is defined by trip origin and destinations being 31 
to the two major airports in Chicago: O’Hare and Midway. The fifth prototype is defined by short, 32 
not shared trips occurring in areas that are well served by transit. The sixth prototype is defined by 33 
nearly all observations being shared rides.  34 

This study is structured with the following sections. Following this section is a literature 35 
review that covers the state-of-the-art in TNC research. After the literature review is the 36 
methodology section which gives an overview of the K-Prototypes algorithm and how it fits the 37 
purpose of this study. The next section reviews the algorithm’s output and leads into the discussion. 38 
Finally, the conclusion contains a review of what is achieved in this study, its limitations, and 39 
possible future works. 40 

 41 
LITERATURE REVIEW 42 
TNCs as they are known now were introduced with the inception of Uber in 2009 and Lyft shortly 43 
after. Ridesharing has existed long before these companies came about, but the innovations that 44 
they brought via improved communications technology to allow immediate street-hailing has 45 
radically altered the transportation ecosystem. There are several levels of TNC services that are 46 
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defined by Shaheen and Cohen (2018). TNC provided trips are considered ridesourcing trips and 1 
should not be confused with ridesharing trips. Unlike the ridesharing case where drivers participate 2 
to offset trip costs, TNC drivers are servicing the customer request in exchange for a fare. More 3 
recently, new trip categories have emerged within ridesourcing, such as splitting rides or curb-to-4 
curb travel. For the major TNCs, riders can decide in most cases to share their trip with other 5 
parties that are traveling along the same trajectory. Authorizing this typically results in lower fares 6 
but longer travel times as the trip now includes several stops that may cause the vehicle to deviate 7 
from the optimal path for a single origin-destination pair. This phenomenon is called ridesplitting. 8 
More definitions of TNC provided trips can be found in Shaheen and Cohen (2018). 9 
 Researchers have tried to develop a better understanding of ridesourcing trips, but data is 10 
scarce. Uber and Lyft do not publicly share their data so there has been a dearth of empirical 11 
studies. Because the data is limited, Henao and Marshall (2018) went so far as to become a TNC 12 
driver and collect trip information themselves. They found that ridesourcing is not efficient. After 13 
accounting for deadheading mileage, the average occupancy of a TNC vehicle is less than one 14 
person. The extra vehicle miles traveled caused by deadheading is also a prominent result from 15 
their analysis.  16 

The current understanding of ridesourcing travel is mostly informed by survey research. In 17 
the following we briefly overview relevant ridesourcing work and relate findings to the current 18 
analysis of real large-scale data. Several studies delve into the trip purposes of ridesourcing trips. 19 
Defined by its utilization of large capacity vehicles, micro-transit (also known as demand-20 
responsive transit, on-demand transit, or flexible transit) can serve as a tool to address public transit 21 
overcrowding and the first-last mile problem (Shaheen and Chan, 2016). It is mostly utilized to 22 
commute (Shaheen and Chan, 2016, Lewis and MacKenzie, 2017). Trips made by the more taxi-23 
like TNCs are mostly for social/recreational trips (Rayle et al., 2014, Zhen, 2015, Mahmoudifard 24 
et al., 2017, Henao and Marshall, 2018). Trip purpose is not included in the current analysis due 25 
to the data anonymization. However, in future works spatial examination of locations of interest 26 
combined with other trip attributes can be used to infer trip types.  27 

The effects of TNCs on the transportation system is a core area of research. In particular, 28 
due to the similarity of the services, the impact on taxis has been widely studied. TNCs have 29 
significantly reduced the demand for traditional taxi services such that taxi drivers altered their 30 
strategies to remain profitable (Nie, 2017, Kim et al., 2018, Contreras and Paz, 2018, Jiang and 31 
Zhang, 2018, Dong et al., 2018, Berger et al., 2018). Schwieterman and Smith (2018) also find 32 
that TNCs are preferred over public transit especially when origin-destination pairs are not well 33 
served by transit. Further determinants of ridesourcing use relate to the travel environment. Frei et 34 
al. (2017) found that weather affects TNC usage. Though their study focused on micro-transit, 35 
TNC services may also be affected by adverse weather.  36 
 Owing to these observations, the ridesourcing trip data used in this project are 37 
supplemented by data on weather, equivalent transit travel times, and peak taxi demand.  38 
 39 
MODEL DEVELOPMENT 40 
The data analysis used to examine patterns of ridesourcing use in this project is an unsupervised 41 
learning technique called K-Prototypes. K-prototypes is similar to K-means since both aim to 42 
cluster several observations together according to their attributes. The advantage K-prototypes has 43 
in this situation is its ability to also accept categorical variables. More details on K-prototypes 44 
development can be found in Huang (1998). 45 
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 The challenge of dealing with categorical variables has been considered for segmentation 1 
analysis. The problem is that the K-means algorithm relies on all variables to be numerical. 2 
Specifically, in the K-means algorithm for a continuous variable such as travel time, the distance 3 
between an observation’s travel time and the proposed cluster’s mean travel time is the key element 4 
for identifying clusters among observations. With a categorical variable such as vehicle type, the 5 
distance is no longer applicable. One strategy to include categorical variables in the K-means 6 
algorithm is to code each category as a dummy variable (0 or 1). The distance calculated by K-7 
means algorithm for a categorical variable is then 0 or 1 because it was coded as a dummy variable, 8 
but this no longer makes sense. With the K-prototypes algorithm the mode of the category is used 9 
and a measure of a simple matching coefficient is used. The formulation from Huang (1998) of K-10 
prototypes algorithm is summarized in equations 1 to 4. 11 
 The matching of observations to prototypes involves reducing the error or cost function. 12 
This cost function represents the distance between observation data and the assigned prototype 13 
center. Equation 1 shows that the error, E, is the sum of distances from the prototype center. 𝑋𝑖 14 
are the attributes of trip i, 𝑄𝑙  is the center of prototype l, and 𝑦𝑖𝑙 is a dummy variable that is equal 15 
to 0 when trip i is assigned to prototype l. It is then the sum of squared distances for n TNC trips 16 
across k number of prototypes. Equation 2 breaks down 𝑑(𝑋𝑖 , 𝑄𝑙) into numerical and categorical 17 
components, where the first term is the squared numerical distance of attribute j of trip i from the 18 
center for attribute j of prototype l; the second term includes a term to determine the weight, 𝛾𝑙, of 19 
the categorical variables to the total error E. The error of prototype l is then calculated in Equation 20 
3, where 𝐸𝑙

𝑐 is further explained by Equation 4. 𝐶𝑗 is the set of all unique values of categorical 21 
attribute j, and 𝑝(𝑐𝑗 ∈ 𝐶𝑗 |𝑙)  is then the probability of unique value 𝑞𝑗  from set 𝐶𝑗  being in 22 
prototype 𝑙. 23 
 24 
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 25 
The advantage of using K-Prototypes algorithm over other clustering algorithms is highlighted by 26 
Equation 4. A common way to code categorical variables for other data-driven methods is to use 27 
one-hot encoding. Using this method, the unique values of a category are coded as a dummy 28 
variable where they are equal to 1 when denoting the variable of interest and 0 otherwise. 29 
Algorithms using one-hot encoded data fail to recognize that these unique values belong to a 30 
categorical variable because categories are reduced to 0 or 1. The advantage of K-Prototype 31 
algorithm is then its recognition of these values being part of one categorical variable and using 32 
the probability of a unique value from a set 𝐶𝑗 being in prototype 𝑙. 33 
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This model is implemented and tuned with the R programming language using the 1 
‘clustMixType’ package (R Development Core Team, 2008, Szepannek and Aschenbruck, 2019). 2 
Using this package, the error is minimized and the weighting of the categorical error is optimized. 3 
Much like other clustering methods, the number of prototypes is a tunable parameter. The final 4 
tunable parameters are discussed in the results section. 5 
 6 
DATA DESCRIPTION 7 
The data used in this project is a partition of the entire available TNC trip data provided by the 8 
City of Chicago (City of Chicago, 2019). The trip data begins on November 1, 2018 and is updated 9 
monthly. For the purpose of obtaining lower optimization times and being able to match the 10 
equivalent transit travel times, the data is partitioned to weekdays in November 2018. Holidays 11 
are not included. This leaves a total of 3,085,070 trips in the dataset. The trips are grouped at the 12 
census tract level and include variables such as travel time, travel distance, fare, whether it was a 13 
shared trip (and if it was how many other trips were included), census tract origin-destination pairs, 14 
and timestamp of pickup and drop-off rounded to the nearest 15-minute increment. 15 
 The weather data were collected from OpenWeatherMap specifically for the City of 16 
Chicago in November 2018 (Open Weather Map, 2019). The data is at the hourly level and 17 
includes amount of rain and snow in the previous hour, qualitative description of the weather (such 18 
as raining, hazy, sunny, etc.), and temperature. The station collecting the data is located at O’Hare 19 
International Airport at the northwest tip of city limits. The supplementary transit travel times 20 
dataset was created for each unique origin-destination-time-day tuple. Transit travel time estimates 21 
were obtained using the Google Distance Matrix (Advanced) API by providing the census tract of 22 
origin, the census tract of destination, travel mode (transit), and departure time (Google, n.d). From 23 
the API, approximate transit travel times between origin-destination pairs are collected. Since the 24 
data were only collected from 6AM to 10PM, the TNC trips data are also restricted to these hours. 25 
The second piece of supplementary data are the monthly taxi trips between census tract origin-26 
destination pairs. The data used are when taxi demand is at its highest point in 2014 (Chen et al., 27 
2018). This data is also collected and made publicly available by the City of Chicago. These data 28 
are further described by Chen et al. (2018). 29 
 30 
ANALYSIS OF RESULTS 31 
The K-prototype algorithm was tuned to select the optimal number of prototypes. This was 32 
determined by developing models with number of prototypes ranging from 2 to 14 and calculating 33 
the total cost across all observations. The final number of prototypes chosen is 6 based on 34 
interpretability of segmentation variables and guidance from the plot which in figure 1 shows a 35 
clear “elbow” where there are 6 prototypes. This “elbow” method is a tool for researchers to find 36 
an appropriate number of clusters (Madhulatha, 2012). An elbow occurs when adding more 37 
clusters does not sufficiently improve the objective function. 𝛾 is the tradeoff between numerical 38 
cost and categorical cost was optimized by the ‘kproto’ function in the ‘clustMixType’ package 39 
and is estimated to be 1.33 for all prototypes as per Equation 2 and 4 (Szepannek and 40 
Aschenbruck, 2019). There is no intuitive meaning to this value except that it can be user-specified, 41 
and higher values mean that the categorical variables are weighted more. Figure 1 shows how 42 
many observations belong in each prototype cluster. The clustering results are shown in Table 1 43 
along with mean values of explanatory attributes in each prototype. A summary of the top 6 origin 44 
and destinations, respectively, are given in Table 2. 45 
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The analysis did not produce prototypes that are heavily differentiated by temperature or snow fall 1 
in the past hour. The first segment of users (Prototype 1 or P1) is the second largest and is 2 
characterized by its relatively short travel time, low distance, and low total fare charges. This short-3 
distance travel is coupled with the strongest weather impacts observed, namely the presence of 4 
adverse weather seen with rain, humidity, and wind speed. The distinct nature of prototype 1 5 
suggests the use of ridesourcing for short distance travel to cope with adverse weather in the early 6 
part of the day. Prototype 2 (P2) also has lower-than-average travel times, distances, and total 7 
fares, but is distinct from prototype 1 due to the trip timing in the evening and the lack of 8 
relationship to weather conditions. Observing Table 2, these trips are most heavily focused in the 9 
wealthy downtown and near north areas. Prototype 3 (P3) has longer travel times which tend to be 10 
associated with longer distances (albeit not associated with airport travel) and higher total charges. 11 
This large user segment suggests some transit gap-filling capacity of ridesourcing in Chicago 12 
whereas the potentially available transit trip would take 30% longer on average with transit travel-13 
time taken as base. Notably, considering the fixed transit pricing, the ridesourcing trips were on 14 
average six times more costly. Trips in this prototype are also typically not shared. Prototype 4 15 
(P4) represents a small group of users that also have long travel times but examining Table 2 16 
shows that the main origin and destinations of these trips is to O’Hare or Midway International 17 
Airports. This prototype also has trips where the origins and destinations are not served well by 18 
transit as seen with the average transit travel time being more than 40% longer. Along with poor 19 
transit connectivity, this cluster features relatively lower taxi frequency. These trips’ fares are more 20 
expensive than in other prototypes, but relative to the cost of traditional taxis, it is still cheaper. 21 
With low taxi frequency, this prototype highlights an advantage of TNCs over taxi. Interestingly, 22 
prototype 5 (P5) is a small cluster that stands out as representing the shortest trips and for being 23 
the only case where trips could have been served better by transit. Notably, the average transit 24 
travel times would be 14% lower than the observed TNC travel times. Most of these trips are in 25 
the Chicago Loop or just north of it. Prototype 6 (P6) is defined by representing nearly all shared 26 
authorized trips. This segment appears to reflect a more cost-conscious user group given that the 27 
ridesourcing price per mile is the lowest, and the competition in terms of price and time is closer 28 
to the potentially available transit trip. 29 

 30 

 31 
FIGURE 1 Selection K number of Prototypes  32 
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 1 
FIGURE 2 Prototype Shares among total ridesourcing trips 2 
 3 
 4 

 5 
 6 
TABLE 1 Prototype Attribute results 7 

Variable P1 P2 P3 P4 P5 P6 
Travel Time (seconds) 637.40* 600.9 1284.0 2014.0 572.2 1320.0 
Distance (miles) 2.16 2.07 5.74 12.25 1.39 4.83 
Total Fare ($) 9.05 8.85 15.56 27.64 8.40 7.43 
Parties Joined in Trip 1.07 1.07 1.04 1.17 1.12 3.00 
Humidity (%) 82.96 66.07 72.29 75.09 73.64 74.12 
Wind Speed (mph) 4.32 3.57 3.66 3.96 3.70 3.66 
Rain last hour (inches) 0.15 0.01 0.03 0.08 0.05 0.05 
Minute after Midnight 702.5 1080.0 878.0 826.4 815.9 870.7 
Transit Travel Time (sec) 844 804 1838 3392 501 1545 
Monthly Taxi Frequency 11695 10031 3558 3840 144687 5286 
Percent ridesplitting (%) 18.77 17.65 10.48 16.58 13.76 100.00 
*Bolded type denotes important prototype features 

 8 

 9 

 10 

 11 
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TABLE 2 Prominent Prototype Trip Origins and Destinations 1 

 ORIGINS DESTINATIONS 
Prototype Community % in Prototype Prototype % in Prototype 

1 

Near North Side 22.62 Near North Side 24.22 
Near West Side 13.63 Loop 15.40 
West Town 9.638 Near West Side 14.15 
Loop 9.537 West Town 5.280 
Lincoln Park 5.878 Lincoln Park 5.012 
Lake View 5.169 Lake View 4.561 

2 

Near North Side 24.96 Near North Side 23.78 
Near West Side 12.84 Near West Side 13.16 
Loop 12.11 West Town 8.932 
West Town 7.502 Lincoln Park 8.162 
Lincoln Park 7.224 Loop 8.085 
Lake View 7.103 Lake View 7.664 

3 

Near North Side 16.77 Loop 18.21 
Loop 10.47 Near North Side 12.07 
Lake View 9.795 Near West Side 11.25 
Near West Side 8.263 Lake View 7.916 
Lincoln Park 7.144 West Town 4.967 
West Town 6.115 Lincoln Park 4.723 

4 

Midway* 13.80 O’Hare 16.17 
O’Hare 9.523 Midway 15.08 
Near North Side 7.606 Near North Side 9.966 
Loop 6.306 Loop 7.152 
Near West Side 5.624 Near West Side 6.974 
Lake View 4.607 Lake View 3.531 

5 

Loop 45.57 Loop 54.35 
Near North Side 32.15 Near North Side 21.88 
Near West Side 8.719 Near West Side 8.013 
Lake View 5.986 Lake View 5.982 
West Town 3.156 West Town 4.160 
Lincoln Park 2.688 Lincoln Park 3.112 

6 

Near West Side 13.81 Near North Side 14.90 
Near North Side 11.54 Near West Side 13.20 
Loop 10.60 Loop 13.18 
West Town 7.686 West Town 6.060 
Lake View 6.510 Lake View 6.058 
Lincoln Park 5.489 Lincoln Park 4.873 

*Bold type denotes important prototype features 
 2 

 3 
  4 
 5 
 6 



Soria, Chen, Stathopoulos  10 
  

DISCUSSION 1 
The K-prototypes analysis is geared at finding relationships in the ridesourcing data by grouping 2 
similar observations together. The merging of multiple datasets further enables the prototypes 3 
search to identify the main ridesourcing profiles with regards to trip attributes (e.g. travel time, 4 
fare, origin and destinations, being private or shared), and competing mobility services (transit and 5 
taxi) along with weather conditions. This discussion section focuses on how the results relate to 6 
current research and can inform future research directions. Four areas of investigation are 7 
highlighted, centering on weather impacts, competition with transit and taxi, ridesplitting patterns 8 
and spatial distribution of ridesourcing. 9 

We find that while weather does not have a pervasive impact on ridesourcing across 10 
clusters, it does strongly determine the choices in P1 highlighted by its higher average windspeed, 11 
humidity, and rainfall in the last hour. The identification of prototype 1 gives evidence that weather 12 
can have a significant impact on TNC usage for as many as 24 % of trips. With the results from 13 
Frei et al. (2017) showing weather having an impact in a micro-transit focused choice experiments, 14 
the importance of including weather as an explanatory variable in future TNC analyses is 15 
illustrated. The use of weather in TNC analyses can further explain the interactions with 16 
ridesourcing and other modes. For example, weather was shown to impact active modes of 17 
transport, so including weather as an explanatory variable between the relationship of ridesourcing 18 
and active mobility can inform their demand in the future (Saneinejad et al., 2012). This is 19 
especially useful for understanding how TNCs might relate to bikeshare as adverse weather has 20 
been shown to decrease its demand and contribute to increased ridership of other modes (Gebhart 21 
and Noland, 2014). Brodeur and Nield (2018) find that ridesourcing demand increases during 22 
adverse weather conditions and compared the supply of TNC drivers to taxis. Their results 23 
illustrate the benefit of TNCs – in particular its dynamic pricing – over taxis as a tool to increase 24 
the supply of drivers and meet consumer demand. By utilizing more data like weather in studies 25 
that examine TNCs’ relationship to other modes, it may reveal when TNCs are complementing or 26 
substituting those modes. A caveat of the current study is the focus on only one month of data. It 27 
is recommended for future work to explore longer temporal panels with a more complete sets of 28 
traditional and emerging modes to reveal the full extent of weather-related ridesourcing demand 29 
and substitution. 30 
 The importance of understanding the relationship TNCs have with other modes is further 31 
highlighted by P4 and P5. P4 shows that airport trips are a major source of demand for ridesourcing 32 
because it is more effective at serving it than current transit option for many users. As evidenced 33 
by the higher average transit travel times and low taxi demand, ridesourcing’s advantage for these 34 
trips illustrates the need for careful planning with regards to airport amenities in the future. The 35 
presence of P4 highlights the importance for policymakers to determine the focus of airport 36 
improvements. Should O’Hare focus on increasing the capacity for ridesourcing pickups and drop-37 
offs? Or should the city focus on improving transit connections to the airport? Mandle and Box 38 
(2017) find that TNCs have a major impact on airport services, and P4 shows more evidence for 39 
further research. 40 
 P5 illustrates the competitive nature beyond travel time of TNCs. Though table 1 shows 41 
that this is a smaller portion of the trips, representing only 5.1% of the data, this is still an 42 
interesting prototype because it emphasizes how TNCs offer several advantages that go beyond 43 
shorter travel times. With shorter transit travel times and the demand previously met by taxis, there 44 
must be factors such as comfort, safety, and convenience that must be considered in conjunction 45 
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with travel time. These other factors may determine how other modes can increase their 1 
competitiveness against TNCs. 2 

Another major area of the literature is on the potential for TNCs to be a more efficient 3 
people mover than privately driven vehicles. The dynamic ridesharing literature examines the 4 
efficiency gains of ridesplitting over private modes (Xue et al., 2018, Alonso-Mora et al., 2017). 5 
Despite theoretical findings on the advantages of ridesplitting, there has been limited exploration 6 
of how this functions in real systems. A general result from this work worth mentioning is the low 7 
share of split rides despite a relatively high share of riders indicating that they are willing to share 8 
their ride. For the complete dataset, 26.7% of all trips were authorized to be shared but of these 9 
only 68.5% were actually shared. That implies that only 18.3% of the overall rides were truly 10 
pooled, likely reflecting a lack of matching travel itineraries that were close enough in space and 11 
time for the matching to occur. The percentage of authorized shared trips of all prototypes except 12 
for P6 is well below the 26.7% figure.  13 

When compared to the other prototypes, P6 shows that pooled trip making can be seen as 14 
a separate profile of use. To further examine the patterns of ridesplitting, figure 3 shows the number 15 
of trips by separate trip-makers within a pooled trip for each prototype. P6 has a much higher share 16 
of shared trips including more than 3 riders. However, this prototype only constitutes 12.8% of the 17 
data. With such a small share of trips being shared, decision-makers that support TNCs should 18 
consider strategies that increase the number of pooled trips. 19 
 Lastly, we discuss the spatial distribution of travel. Notably, the majority of trips occur in 20 
or around the Chicago Loop or airports with standouts Near North Side and Near West Side where 21 
there are typically more residential units than the Loop and overall higher density compared to the 22 
rest of the city. Table 2 confirms that the top 6 origins and destinations hardly differ across 23 
prototypes. The strong concentration of flows is further illustrated in Figure 4 that shows the 24 
location of the top O-D pairs distinguished by bold borders. These areas tend to have higher influx 25 
of visitors, along with more leisure landmarks such as restaurants and night clubs. The residents 26 
of these community areas tend to have higher average incomes and possess higher educational 27 
attainments than the average Chicagoan. The ongoing debate in Chicago and cities around the US 28 
has focused on the lack of broader coverage, outside transit rich areas, of ridesourcing. Figure 4 29 
highlights the lower share of rides occurring in and between historically underserved communities 30 
on the South and West sides of Chicago. 31 

The existing research has identified that specific groups, that is, younger, better-educated, 32 
and more affluent individuals tend to use ridesourcing more (Rayle et al., 2014, Clewlow and 33 
Mishra, 2017). There is still a limited understanding of the socio-spatial equity of transformative 34 
mobility. A Seattle study found that UberX waiting times were (surprisingly) comparatively 35 
shorter in areas with lower income. Overall, the impact was larger in relation to population and 36 
employment density (Hughes and MacKenzie, 2016). Brown (2018) observes for Los Angeles that 37 
ridesourcing serves a broader set of neighborhoods and have lower cancellation rates and waiting 38 
times than traditional taxis. Future work should focus on gaining more understanding of how the 39 
overlapping disadvantages of transit coverage, user access needs (e.g. distance to work, amenities), 40 
digital divide and ethnic/income disadvantage impact and are impacted by ridesourcing diffusion 41 
and performance. 42 

 43 
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 1 
FIGURE 3 Number of Travelers pooling a ride in Actual Shared Trips 2 

 3 

 4 
FIGURE 4 Ridesourcing Flows in the City of Chicago with bolded boundaries of 5 
prominent Community Areas   6 

 7 
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CONCLUSION AND FUTURE WORK 1 
This study examines a unique TNC dataset from Chicago, IL by utilizing an unsupervised learning 2 
algorithm that accepts categorical data. The use of K-prototypes showed that there were 6 distinct 3 
prototypes to describe underlying relationships in the data. Though demand and policy responses 4 
are not derived from this analysis, the goal of this study is to identify distinguishable features of 5 
TNC trips regarding service attributes, weather, transit, taxis, origins and destinations, and 6 
ridesplitting. The prototypes identified here shows that TNC trips can be described as a response 7 
to adverse weather conditions, evening trips, longer trips, trips to the airport, trips that could have 8 
happened just as fast as transit, or trips that are pooled. 9 
 The identification of these distinct trip types shows where future research is warranted. The 10 
discussion in this study focuses on how future research should consider factors such as weather 11 
and other external factors when estimating the demand for TNCs and other modes, airport-based 12 
mobility options in the future, understanding why TNCs have competitive advantages besides 13 
faster travel times, and why more trips are not shared. The last point made in the discussion is how 14 
most of the trips are completed in and surrounding the CBD of Chicago. The concentration of these 15 
trips in this area highlights the relationship between density and education and the role of TNCs 16 
in the broader picture of offering better mobility coverage (including a deeper discussion of where 17 
and for whom). 18 
 The main limitations of this study come from the constraints of limited data. Firstly, the 19 
weather data is collected at only one location. Considering the size of Chicago and the location of 20 
the station, the data may not be representative of local weather. Secondly, the TNC, taxi, and transit 21 
data are aggregated at the Census tract level. Because of this aggregation, the comparison of travel 22 
times between TNC and transit trips may not be as accurate. To increase the accuracy of these 23 
comparisons, more granular data is needed. Lastly, the TNC data only became available for trips 24 
from November 2018 and beyond. The data used in this project are only from November 2018, so 25 
more insights can possibly be gained by expanding the range of data. 26 
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